SportsTurf

December 2013

SportsTurf provides current, practical and technical content on issues relevant to sports turf managers, including facilities managers. Most readers are athletic field managers from the professional level through parks and recreation, universities.

Issue link: https://read.dmtmag.com/i/231240

Contents of this Issue

Navigation

Page 25 of 47

FieldScience | By Jeff Haag Healthy chloroplasts for healthy sports turf P lant chloroplasts are large organelles that, like mitochondria, are bounded by a double membrane called the chloroplast envelope. In addition to the inner and outer membranes of the envelope, chloroplasts have a third internal membrane system, called the thylakoid membrane. The thylakoid membrane forms a network of flattened discs called thylakoids, which are frequently arranged in stacks called grana. Because of this three-membrane structure, the internal organization of chloroplasts is more complex than that of mitochondria. In particular, their three membranes divide chloroplasts into three distinct internal compartments: (1) the intermembrane space between the two membranes of the chloroplast envelope; (2) the stroma, which lies inside the envelope but outside the thylakoid membrane; and (3) the thylakoid lumen. The Structure and Function of Chloroplasts Plant Cell Chloroplast Structure Outer Membrane Inner Membrane Stroma Lamellae Thylakoid Stroma Intermembrane Space Figure 1 26 SportsTurf | December 2013 Granum (Stack of Thylakoids) In addition to the inner and outer membranes of the envelope, chloroplasts contain a third internal membrane system: the thylakoid membrane. These membranes divide chloroplasts into three internal compartments. The major difference between chloroplasts and mitochondria, in terms of both structure and function, is the thylakoid membrane. This membrane is of central importance in chloroplasts, where it fills the role of the inner mitochondrial membrane in electron transport and the chemiosmotic generation of ATP. The inner membrane of the chloroplast envelope (which is not folded into cristae) does not function in photosynthesis. Instead, the chloroplast electron transport system is located in the thylakoid membrane, and protons are pumped across this membrane from the stroma to the thylakoid lumen. The resulting electrochemical gradient then drives ATP synthesis as protons cross back into the stroma. In terms of its role in generation of metabolic energy, the thylakoid membrane of chloroplasts is thus equivalent to the inner membrane of mitochondria. THE CHLOROPLAST GENOME Like mitochondria, chloroplasts contain their own genetic system, reflecting their evolutionary origins from photosynthetic bacteria. The genomes of chloroplasts are similar to those of mitochondria in that they consist of circular DNA molecules present in multiple copies per organelle. However, chloroplast genomes are larger and more complex than those of mitochondria, containing approximately 120 genes. The chloroplast genomes of several plants have been completely sequenced, leading to the identification of many of the genes contained in the organelle DNAs. These chloroplast genes encode both RNAs and proteins involved in gene expression, as well as a variety of proteins that function in photosynthesis. Both the ribosomal and transfer RNAs used for translation of chloroplast mRNAs are encoded by the organelle genome. These include four rRNAs (23S, 16S, 5S, and 4.5S) and 30 tRNA species. In contrast to the smaller number of tRNAs encoded by the mitochondrial genome, the chloroplast tRNAs are sufficient to translate all the mRNA codons according to the universal genetic code. In addition to these RNA components of the translation system, the chloroplast genome encodes about 20 ribosomal proteins, which represent approximately a third of the proteins of chloroplast ribosomes. Some subunits of RNA polymerase are also encoded by chloroplasts, although additional RNA polymerase subunits and other factors needed for chloroplast gene expression are encoded in the nucleus. IMPORT AND SORTING OF CHLOROPLAST PROTEINS Protein import into chloroplasts generally resembles mitochondrial protein import. Proteins are targeted for import into chloroplasts by N-terminal sequences of 30 to 100 amino acids, called transit peptides, which direct protein translocation across the two membranes of the chloroplast envelope and are then removed by proteolytic cleavage. As in mitochondria, molecular chaperones on both the cytosolic and stromal sides of the envelope are required for protein import, which requires energy in the form of ATP. In con- www.sportsturfonline.com

Articles in this issue

Links on this page

Archives of this issue

view archives of SportsTurf - December 2013